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LETTER TO THE EDITOR 

Transfer-matrix interface rescaling in magnetic bilayers 

J C S Levy and H Puszkarskit 
Laboratoire de Magnetisme des Surfaces, Universite Paris Vn. 75251 Paris CMex 05, 
France 

Received 31 January 1991, in final form 12 April 1991 

Abstract. The transfer matrix method is applied to magnetic bilayer film with the aim of 
expressing its characteristic equation by the interface rescaling parameten. The interface- 
localized mode is then shown to exist in the system for appropriately chosen values of the 
interfacespinpinningparametersdefinedinthemodel. Wealsoshow that inorder toachieve 
a proper description of the interfacial conditions in the caSe of bilayer exchange coupled 
ferromagneticfilmsitisnecessary to take intoconsiderationa well defined'effective interface 
pinning' originating in the intrinsic interfacial coupling, 

In recent years studies of the magnetic properties of surfaces, multilayered structures 
and thin films have undergone a renaissance with the development of new growth 
and characterization techniques. Many new materials and structures have revealed 
significant new magnetic properties. Theoretical studies of such systems started but a 
few yearsago. A direct numerical analysis of suchsystems would, ingeneral, involve huge 
numerical computations. Therefore analytical approaches are of essential importance 
when studying such systems. 

Several alternative analytical approaches to the analysisof composite structures have 
been made recently. The surface Green-function matching method has been used to 
obtain the eigenvalues of superlattices [I]. The interface response theory was formulated 
for determining eigenvalues [Z] and eigenvectors [3] in composite systems. Another 
approach, the interface response rescaling method [4] permits the calculation of a 
response function of the composite system from the knowledge of the surface response 
functions of each constituent subsystem. Finally, the interface rescaling method [5]  
calculates the eigenvalues and eigenvectors of the finite composite layered system by 
performing the reduction of its eigenproblem to that of one of its individual constituent 
sublayers. This approach has recently been presented as a recursion interface rescaling 
procedure for solving the eigenproblem of double-layer [6] and triple-layer films [7]. 
This method has also been applied to the study of the propertiesof bilayer ferromagnetic 
films [SI. On the other hand quite another new approach [9-141 to the study of dynamical 
properties of magnetic multilayer films and superlattices has been made and this 
approach refers to the local picture of transfer matrix method. In the transfer matrix 
method, two parameters of the spin wave on one layer define the values of these two 
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parameters on the next layer, and step by step the product of such transfer matrices 
defines these two parameters everywhere in the sample. Different choices of those two 
spin wave parameters have been used; from the early work by Poinear4 in mechanics 
[15],thespinwaveamplitudeulandits'gradient'ul - K ~ - ,  havebeenused[ll, 141,other 
authors used the amplitudes of two spin wave polarizations [12, 131. Of course, these 
different transfer matrix approaches are equivalent since they are just due to a different 
choice of the basis of the vectorial set of spin waves. The transfer matrix approach is 
easy to handle numerically since it requires only products of 2 X 2 matrices even in the 
case of quite inhomogeneous materials. However, it requires many operations to find 
the eigenvalues of the characteristic equation, and this is the reason why more global 
methods were used when the accuracy of the numerical results was not so good for a 
conveniently short computational time. However, on the one hand computational times 
have decreased, and on the other hand the accuracy of the numerical definition of the 
eigenvalues can be easily checked by constructing the eigenvectors which are known to 
satisfy some simple analytical criteria. 

Both methods, namely the interface recursion rescaling one and the transfer matrix 
method, consist in the successive elimination of the involved equations of motion--one 
by one, when approaching the interface. However, this elimination is performed by 
using different tricks and there is now a need to compare the final formulae obtained 
within the scopes of the two procedures. The aim of this paper is, firstly, to show that 
these two methods are fully equivalent. Additionally, it is worth noting that when 
performing the proof of this equivalence we have obtained as a by-product new formulae 
forthe interface rescaling parametersexpressed in termsof the transfer matrixelements. 
This is not a trivial result since now the rescaling interface parameters become directly 
explicit functionsof the energy of the respective elementary excitations (e.g. magnons). 
Consequently, the characteristic equation can be expressed in terms of the energy as 
well. instead of the respective wave numbers, as it is in the standard procedure. This 
would become especially useful in the case of systems exhibiting strong bulk inhom- 
ogeneities, for example. 

We consider the following eigenvalue problem: 

(x - €/CY -~a)uo - u 1  = 0 

-U/-] + ( X - E / C Z ' ) K ~ - K ~ + ~  = o  

P ' U N - I  = (Y-E/P-c)uzv-uN+i 

- + 1  + ( y - E / ~ ) u ~ - ~ , + ~  = O  
- u L - ~  + ( y - E / p - d ) ~ L - l  = O  

( I  = 0) 
( I  = 1,2, .  . . , N - 2 )  

(1 = N) 
( 1 =  N + l , N + 2 , .  . . , L - 2 )  

( I  = L - 1) 

-u ,p -~  + ( x - E / a - b ) u , v - l  = P U N  ( l = N - l )  

with the index I labelling the atomic planes (1 = 0; L - 1 correspond to the surfaces, 
while 1 = N - 1 ; N corresponds to the two interface planes). We set I such that the 
equations 1 = 0, 1, . . . N - 1 (with x - E / n  as diagonal term) describe the subsystem 
A, while the equations I = N, N + 1,. . . L - 1 (with diagonal term y - E/P) describe 
the subsystem B. Above, E denotes an eigenvalue (the energy), uI is the respective 
eigenfunction (the wavefunction) and a, P stand for bulk interaction parameters 
between nearest neighbours in the subsystems A and B respectively. p and p' are the 
interface coupling parameters, while the parameters a, d and b,  c are, respectively, 
surface and interface pinning parameters. 
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We shall apply the transfer matrix procedure to the subset A only; the respective 
transformation for the subset B will be performed afterwards by rewriting the h a 1  result 
obtained for the subset A with recourse to the formal analogy existing between the two 
subsets. First, we note that any of the bulk equations of the subset A can be rewritten in 
terms of the transfer matrix T in the following manner [14]: 

(Ui+' 
=T(Ui ) UI+1 - U1 - UI-1 

with 

(26) 

If we now apply successively the transfer matrix T to each of the bulk equations of A, 
i.e. one after the other, we finally arrive at the following result: 

Let us note, at this stage, that with regard to (3) one is justified in viewing the subset A 
of eigenvalue equations (1) as consisting now of three equations only, namely: the 
surface equation (I = 0), the bulk equation in matricial form, (3), and the interface 
equation (1 = N - 1). By having recourse to the definition (26) one easily finds the 
explicit expression for the (N - 2)th power of the transfer matrix which appeared in 
(3). This is: 

with the notations: 

2p = x - E / n  - 2 q = m .  

On the other hand, the surface and interface equations can be rewritten in the following 
forms: 

U1 - U0 = (2p + 1 - a)ua (74  

(7b) U N - ~  - u N - 2  = P U N  - (2p + 1 - b)UN-l. 

Ifwe now substitute (7) and (4) into (3) we arrive at the final expressions for the functions 
uN-, and uN expressed by uo: 

uN- l  = [(2P + - + T12) - T121U0 ( 8 4  
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PUN = K Z P  + 2 - a)[(T,l + Tzd + (ZP + 1 - bKTli + T1dI 

- [Tn + T12(2~ + 1 - b ) l h  (86) 
Proceeding similarly we easily get the following expression for the eigenamplitudes at 
the remaining sites of the subsystem A: 

(Sc) 
where the newly introduced matrix elements I,, are related to the matrix T, equation 
(Zb), by the equality: f = TI-]. 

It is our aim to express the interface rescaling parameters (defined in [4]) by the 
transfer matrix elements r, derived in the preceding section. Using the notations of 
the present paper, the respective rescaling parameters are defined by the following 
equations: 

and 

\;here RB'A denotes the parameter rescaling the subset A with regard to the subset B, 
and RA'B denotes the reverse. The concept of rescaling parameters as defined by (9 )  
allows us to decouple the two respective subsets of (1). If use is made of one of the 
equations (9), decoupling of the two subsystems is effectively performed with the 
consequence that the respective rescalingparameter 'injects' the full information about 
one subsystem into the other. This is the main advantage of introducing the concept of 
the interface rescalingparameters which justifiesour effort in searching for their explicit 
presentation in terms of the transfer matrix elements. By the definition (9b) and using 
the formerly obtained results (8a, b )  we immediately find the formula for the rescaling 
parameter RA'B: 

U I  = U m P  + 2 - W l l  + 112) - 1121 i =  1,2, .  . . N - 2 

puN = R B ' A ~ N - ,  (90) 

pruN- ,  = RA"uN (96) 

(10) 
The formula for the remaining rescaling parameter RB'A could in principle be obtained 
by re-applying the whole procedure presented above to the subsystem B. However, this 
would be an unnecessary task: on the grounds of the formal analogy existing between 
the subsets A and B of (1) we easily conclude that the formula for RB'A is exactly the 
same as in (lo), provided one replaces the quantities involved (see also (5) and (6)) in 
accordance with the following transformations: N-+ L - N ,  x + y ,  a+P. a - +  d and 
b-+c. 

Now thereisonlyonestepto bemadeinordertoarriveat thecharacteristicequation: 
on combining (9) we get equality: 

PP' = RB'ARA'B. (11) 
From (IO) and (5)-(6), the unknown quantity of (11) is the energy E (to power L). The 
roots of this equation are dependent both on the product of the interface coupling 
parameters (pp' )  as well as on the pinning parameters involved (a,  b ,  c and d )  as one 
could expect from the formulation of the problem. After solving ( l l ) ,  knowledge of the 
eigenvalue set of E allows us to calculate the transfer matrixT (using (2b)) for each of 
the normal excitations, whence the eigenfunctions ui can also be expressed in terms of 
E. This concludes our task. 
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To our knowledge, this is the first application of the transfer matrix approach to the 
bilayer eigenvalue problem aimed at the calculation of the respective interface. rescaling 
parameters. The advantage of this approach consists in expressing the characteristic 
equation in terms of the energy rather than in terms of the respective waveoumber k,  
and this may prove useful in prospective applications of the method to systems which 
are non-homogeneous in the bulk, in which the k-dependence is very bighly complex. 
In the case considered in the present paper, i.e. with subsystems exhibiting only surface 
inhomogeneities, the k-dependences are very simple, namely x - E/LU = 2 cos k, and 
y - E/P = 2 cos kg. With these substitutions for the subsystem A we have (instead of 
(4) and (5)): 

(12) 1 sin(N- l)kA -sin(N-2)kA;sin(N-2)kA 

2(coskA - l)sin(N - 2)kA ;sin@" 2)kA - sh(N - 3)kA 
T N - 2  = - 

and for the respective transfer matrix of the subsystem B we need only to replace in the 
above formula k, by k, and N by (L - N). When substituting appropriate matrix 
elements, resulting from (12), into (lo), we obtain the following expression for the first 
rescaling parameter: 

. sinNk. -asinfN-l)k. 

Proceeding similarly we can get the respective expression for the second rescaling 
parameter. At this stage it already becomes obvious that the results obtained in [6] and 
expressed in the language of wavenumbers are therefore fully recovered. 

We now consider a bilayer film composed of two (parallel-sided) layers made from 
the same ferromagnetic material characterized by the bulk exchange integral Jbulk. The 
last assumption leads, in our terminology and within the framework of the Heisenberg 
localized spin model, to the following equalities: x = y, o( = /3 = 1. We are mainly 
interested in the spectrum of standing spin wave modes of our bilayer system, and the 
effects exerted upon it by the interface spin pinning. To emphasize this interface 
effect weneglect inour present considerations the surfaceanisotropy,i.e. weassume that 
a = d = 1. However, we assume throughout that the magnetizations of the interacting 
sublayers are parallel to each other. We perform calculations within the framework 
of the Heisenberg localized spin model assuming pure exchange (nearest-neighbour) 
interactions and a Zeeman Hamiltonian in standard forms. We neglect the dipolar 
interactions since we are mainly interested in the range of energies corresponding to 
pure exchangespin wave excitationsat low temperatures, whichcan beinvestigated, e.g. 
by thespin wave resonanceexperiment. Let usconsider first thecase whenJIaedm = JbnIk. 
Introducing now the interface anisotropy field Ifini acting on interface spins only (i.e. 
on those belonging to the planes I = N - 1; N)-thus being the field responsible for 
interface spin pinning-we arrive at the following expression for the interface pinning 
and coupling parameters [SI: 

where zL is the number of nearest spins situated io the sub-interface plane, y is the film 
magnetization unit vector and other notations have the standard meaning. From (14) 
we notice that interface spin pinning depends both on the interface anisotropy field 
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I I INTERFACE P111N110 PARAUERR 

(b=c) - I I 
Flgure 1. Energy and shape of &e f i s t  (n = 1) energetically lowest lyingspin wave mode in 
the spectrum versus the interface pinning. For simplicity it is assumed here that the bilayer 
film consists of two identical sub-layen of equal thicknesses ( L  = with equal interface 
coupling parameten: p = p' = 1. It is also assumed that there arc no surface anisotropies 
(i.e. a = d = I) on the outer surfaces. (a )  shows the dependence of the mode energy on the 
interface pinning parameter (b = E ) ,  while (b) shows the evolution of the corresponding 
mode profile. When the interface pinning parameter grows, the respective interface spin 
pinning becomes weaker, and this results in changing the mode character from 'bulk' (case 
1). through uniform mode (case 2). to interfacelocalized mode (cases 3 and 4). 

value, as well as on the angle between this anisotropy field and the film magnetization. 
Figure 1 shows the effect exerted by the interface pinning on the energetically lowest 
(n = 1)  lying mode of the spin wave spectrum; one sees that fo rb  < 0 the energy (figure 
l (a))  ofthismodelies within the'band'ofextended (bu1k)modes. However, forgrowing 
positive b it is shifted below the band edge (denoted as a broken line) to the 'forbidden' 
zone. From figure l(b) it is evident that the mode belonging to the forbidden zone has 
the nature of an interface-localized mode, whose localization increases when b grows. 
Physically, as follows from the formula (14), such interface localization can be achieved 
for the appropriate direction of the film magnetization with respect to the interface 
anisotropy field. 

Let us now consider the opposite case, namely, the case when K,,, = 0 but J,nrerfacc # 
Jbulk. The respective interface pinning and coupling parameters become (see [8] and 
[W: 

b = C = 1 - J m m d J b u l k  (154 

The exchange integral Jinterface represents intrinsic interfacial coupling, whereas the 
parametersp, p'can be dealt with aseffectiveinterfacial coupling parameters, Similarly, 
the parameters b, c a n  be termed the effective interfacialpinning parameters; we note 
that they are functions of the intrinsicinterfacialcouplingJ,,,,,,,,. The effectivecoupling 
and pinning parameters are mutually interdependent: a weakening in effective coupling 
at decreasing Jin,erfaec is compensated for by an increase in effective pinning (see (15)). 
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Effective interfacial pinning can easily be understood on grounds of the molecular fields 
acting through the interfacewe fmd that the effective interface pinning parameters b,  
c (equation (15a)) can be re-expressed as follows: 

b = c = l  - ~ ~ ~ / 2 S J b u l t 2 1 ) ( ~ . K i ~ t )  (16) 

Kim = ( 2 ~ L J i n r e l f a r r / g ~ ~ ~ ) S  (17) 

where 

is effective interfacial molecular field acting on the interface spins S (of a given sublayer) 
originating in the interactions of these spins with the spins of the adjacent sublayer. 

The intrinsic antiferromagnetic interfacial coupling can also be responsible for the 
emergence of interface localized spin wave modes as can (as we have seen above) the 
interface anisotropy field. However, we expect that the effect of such localization should 
be relatively enhanced in the present case, since Ji,,,,,,actssimultaneously both through 
the interface coupling parameters as well as through the interface pinning parameters 
(as one sees from (15)). At this stage it is not our aim to proceed to a numerical analysis 
ofthis effect and we leave the problem for further investigation. In conclusion, however, 
let us emphasize that we believe our method will also turn out to be suitable for studying 
interface localized modes (which have recently attracted the interest of experimentalists) 
in bilayer films consisting of two different ferromagnetic materials. 

One of the authors (HP) wishes to express his gratitude to the Ministere de la Recherche 
et de la Technologie de la France and to Polish Ministry of National Education for 
providing the necessary support for his stay in France. 
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